
CS 188: Artificial Intelligence
Spring 2007

Lecture 9: Logical Agents 2
2/13/2007

Srini Narayanan – ICSI and UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Announcements

§ PPT slides
§ Assignment 3

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Inference by enumeration
§ Depth-first enumeration of all models is sound and complete

§ PL-True returns true if the sentence holds within the model
§ For n symbols, time complexity is O(2n), space complexity is O(n)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Validity and satisfiability
A sentence is valid if it is true in all models,

e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable
Satisfiability of propositional logic was instrumental in developing the
theory of NP-completeness.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Proof methods
§ Proof methods divide into (roughly) two kinds:

§ Application of inference rules
§ Legitimate (sound) generation of new sentences from old
§ Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search
algorithm
§ Typically require transformation of sentences into a normal form

§ Model checking
§ truth table enumeration (always exponential in n)
§ improved backtracking, e.g., Davis--Putnam-Logemann-Loveland

(DPLL)
§ heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Logical equivalence
§ To manipulate logical sentences we need some rewrite

rules.
§ Two sentences are logically equivalent iff they are true in

same models: α ≡ ß iff α╞ β and β╞ α

You need to
know these !

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Conversion to CNF
B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Resolution
Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D) :

Basic intuition, resolve B, ¬B to get (A) ∨ (¬C ∨ ¬D) (why?)

§ Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

§ Resolution is sound and complete
for propositional logic.

§ Basic Use: KB ╞ α iff (KB ∧¬α) is unsatisfiable

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Resolution

Soundness of resolution inference rule:

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Resolution algorithm

§ Proof by contradiction, i.e., show KB∧¬α unsatisfiable

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Resolution example

§ KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 α = ¬P1,2

Either you get an empty clause as a resolvent (success) or
no new resolvents are created (failure)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Efficient propositional inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms
§ DPLL algorithm (Davis, Putnam, Logemann, Loveland)
§ Incomplete local search algorithms
§ WalkSAT algorithm

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is

satisfiable.

Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is

impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The WalkSAT algorithm

§ Incomplete, local search algorithm
§ Evaluation function: The min-conflict heuristic of

minimizing the number of unsatisfied clauses
§ Balance between greediness and randomness

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The WalkSAT algorithm

Min Conflicts

Random walk

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Hard satisfiability problems

§ Consider random 3-CNF sentences. e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨
¬B ∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses
n = number of symbols

§ Hard problems seem to cluster near m/n = 4.3
(critical point)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Hard satisfiability problems

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Hard satisfiability problems

§ Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Inference-based agents in the
wumpus world

A wumpus-world agent using propositional logic:

¬P1,1
¬W1,1
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4
¬W1,1 ∨ ¬W1,2
¬W1,1 ∨ ¬W1,3
…

⇒ 64 distinct proposition symbols, 155 sentences

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Summary
§ Logical agents apply inference to a knowledge base to

derive new information and make decisions
§ Basic concepts of logic:
§ syntax: formal structure of sentences
§ semantics: truth of sentences wrt models
§ entailment: necessary truth of one sentence given another
§ inference: deriving sentences from other sentences
§ soundness: derivations produce only entailed sentences
§ completeness: derivations can produce all entailed sentences

§ Wumpus world requires the ability to represent partial
and negated information, reason by cases, etc.

§ Resolution is complete for propositional logic
§ Propositional logic lacks expressive power

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

First Order Logic (FOL)

§ Why FOL?
§ Syntax and semantics of FOL
§ Using FOL
§ Wumpus world in FOL
§ Knowledge engineering in FOL

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Pros and cons of propositional logic

J Propositional logic is declarative
J Propositional logic allows partial/disjunctive/negated

information
§ (unlike most data structures and databases)

J Propositional logic is compositional:
§ meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

J Meaning in propositional logic is context-independent
§ (unlike natural language, where meaning depends on context)

L Propositional logic has very limited expressive power
§ (unlike natural language)
§ E.g., cannot say "pits cause breezes in adjacent squares“
§ except by writing one sentence for each square

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

First-order logic

§ Whereas propositional logic assumes the
world contains facts,
§ first-order logic (like natural language)

assumes the world contains
§ Objects: people, houses, numbers, colors,

baseball games, wars, …
§ Relations: red, round, prime, brother of,

bigger than, part of, comes between, …
§ Functions: father of, best friend, one more

than, plus, …

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Syntax of FOL: Basic elements

§ Constants KingJohn, 2, UCB,...
§ Predicates Brother, >,...
§ Functions Sqrt, LeftLegOf,...
§ Variables x, y, a, b,...
§ Connectives ¬, ⇒, ∧, ∨, ⇔
§ Equality =
§ Quantifiers ∀, ∃

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Atomic sentences

Atomic sentence = predicate (term1,...,termn)
or term1 = term2

Term = function (term1,...,termn)
or constant or variable

§ E.g., Brother(KingJohn,RichardTheLionheart)
§ > (Length(LeftLegOf(Richard)),

Length(LeftLegOf(KingJohn)))

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Complex sentences

§ Complex sentences are made from atomic
sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2,

E.g. Sibling(KingJohn,Richard) ⇒
Sibling(Richard,KingJohn)
>(1,2) ∨ ≤ (1,2)
>(1,2) ∧ ¬ >(1,2)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Truth in first-order logic
§ Sentences are true with respect to a model and an interpretation

§ Model contains objects (domain elements) and relations among
them

§ Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

§ An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Models for FOL: Example

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Universal quantification
§ ∀<variables> <sentence>

Everyone at UCB is smart:
∀x At(x,UCB) ⇒ Smart(x)

§ ∀x P is true in a model m iff P is true with x being each
possible object in the model

§ Roughly speaking, equivalent to the conjunction of
instantiations of P

At(KingJohn,UCB) ⇒ Smart(KingJohn)
∧ At(Richard,UCB) ⇒ Smart(Richard)
∧ At(UCB,UCB) ⇒ Smart(UCB)
∧ ...

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

A common mistake to avoid

§ Typically, ⇒ is the main connective with ∀
§ Common mistake: using ∧ as the main

connective with ∀:
∀x At(x,UCB) ∧ Smart(x)
means “Everyone is at UCB and everyone is smart”

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Existential quantification
§ ∃<variables> <sentence>

§ Someone at UCB is smart:
§ ∃x At(x,UCB) ∧ Smart(x)

§ ∃x P is true in a model m iff P is true with x being some
possible object in the model

§ Roughly speaking, equivalent to the disjunction of
instantiations of P

At(KingJohn,UCB) ∧ Smart(KingJohn)
∨ At(Richard,UCB) ∧ Smart(Richard)
∨ At(UCB,UCB) ∧ Smart(UCB)
∨ ...

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Another common mistake to avoid

§ Typically, ∧ is the main connective with ∃

§ Common mistake: using ⇒ as the main
connective with ∃:

∃x At(x,UCB) ⇒ Smart(x)
is true if there is anyone who is not at UCB!

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Properties of quantifiers
§ ∀x ∀y is the same as ∀y ∀x
§ ∃x ∃y is the same as ∃y ∃x

§ ∃x ∀y is not the same as ∀y ∃x
§ ∃x ∀y Loves(x,y)
§ “There is a person who loves everyone in the world”

§ ∀y ∃x Loves(x,y)
§ “Everyone in the world is loved by at least one person”

§ Quantifier duality: each can be expressed using the other
§ ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
§ ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Equality

§ term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same
object

§ E.g., definition of Sibling in terms of Parent:
∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Using FOL

The kinship domain:
§ Brothers are siblings

∀x,y Brother(x,y) ⇔ Sibling(x,y)
§ One's mother is one's female parent

∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))
§ “Sibling” is symmetric

∀x,y Sibling(x,y) ⇔ Sibling(y,x)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Interacting with FOL KBs
§ Suppose a wumpus-world agent is using an FOL KB and perceives a smell

and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a BestAction(a,5))

§ I.e., does the KB entail some best action at t=5?

§ Answer: Yes, {a/Shoot} ← substitution (binding list)

§ Given a sentence S and a substitution σ,
§ Sσ denotes the result of plugging σ into S; e.g.,

S = Smarter(x,y)
σ = {x/Hillary,y/Bill}
Sσ = Smarter(Hillary,Bill)

§ Ask(KB,S) returns some/all σ such that KB╞ σ

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

KB for the wumpus world

§ Perception
§ ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)

§ Reflex
§ ∀t Glitter(t) ⇒ BestAction(Grab,t)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Deducing hidden properties

§ ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}

Properties of squares:
§ ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

Squares are breezy near a pit:
§ Diagnostic rule---infer cause from effect

∀s Breezy(s) ⇒ ∃ r Adjacent(r,s) ∧ Pit(r)
§ Causal rule---infer effect from cause

∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates,

functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem

instance
6. Pose queries to the inference procedure and

get answers
7. Debug the knowledge base

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The electronic circuits domain

One-bit full adder

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The electronic circuits domain
1. Identify the task
§ Does the circuit actually add properly? (circuit

verification)
2. Assemble the relevant knowledge
§ Composed of wires and gates; Types of gates (AND,

OR, XOR, NOT)
§ Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
§ Alternatives:

Type(X1) = XOR
Type(X1, XOR)
XOR(X1)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The electronic circuits domain
4. Encode general knowledge of the domain
§ ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
§ ∀t Signal(t) = 1 ∨ Signal(t) = 0
§ 1 ≠ 0
§ ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)
§ ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n

Signal(In(n,g)) = 1
§ ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n

Signal(In(n,g)) = 0
§ ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔

Signal(In(1,g)) ≠ Signal(In(2,g))
§ ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠

Signal(In(1,g))

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The electronic circuits domain
5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The electronic circuits domain

6. Pose queries to the inference procedure
What are the possible sets of values of all the

terminals for the adder circuit?
∃i1,i2,i3,o1,o2 Signal(In(1,C_1)) = i1 ∧ Signal(In(2,C1)) =
i2 ∧ Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧
Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Summary

§ First-order logic:
§ objects and relations are semantic primitives
§ syntax: constants, functions, predicates,

equality, quantifiers

§ Increased expressive power: sufficient to
express real-world problems

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

